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Abstract

In this work we propose three different procedures for vector-valued rational interpolation of a
functionF(z), whereF : C → CN , and develop algorithms for constructing the resulting rational
functions. We show that these procedures also cover the general case in which some or all points of
interpolation coalesce. In particular, we show that, when all the points of interpolation collapse to
the same point, the procedures reduce to those presented and analyzed in an earlier paper [J. Approx.
Theory 77 (1994) 89] by the author, for vector-valued rational approximations from Maclaurin series
of F(z). Determinant representations for the relevant interpolants are also derived.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In an earlier work, Sidi[4], we presented three different kinds of vector-valued rational
approximations derived from the Maclaurin series

∑∞
i=0 uiz

i of a vector-valued function
F(z), whereF : C → CN . Hereui ∈ CN are vectors independent ofz. These approxima-
tions were based on the minimal polynomial extrapolation (MPE), the modified minimal
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polynomial extrapolation (MMPE), and the topological epsilon algorithm (TEA), three
extrapolation methods used for accelerating the convergence of certain kinds of vector se-
quences; they were shown to have Padé-like algebraic properties and were denoted SMPE,
SMMPE, and STEA, respectively, for short. Following their derivation, we also provided in
[4] detailed convergence analyses of de Montessus and Koenig types pertaining to the case
in whichF(z) is analytic atz = 0 andmeromorphic in some open diskK = {z : |z| < R}.
The results of[4] show that SMPE, SMMPE, and STEA are effective approximation

procedures for such functionsF(z). The effectiveness of the procedures SMPE, SMMPE,
and STEA is also attested to by their close connection with well-known Krylov subspace
methods, such as those of Arnoldi and of Lanczos, for approximating eigenpairs of large
sparsematrices. For details, seeSidi[5], where someof the literature on vector extrapolation
and Krylov subspace methods is also mentioned.
In the present work, we treat the problem ofinterpolatingthe functionF(z) by vector-

valued rational functions along lines similar to those of[4].Wederive three different types of
rational interpolation procedures, which we denote IMPE, IMMPE, and ITEA for short, in
analogy to SMPE, SMMPE, andSTEA, respectively.We show that these procedures remain
valid for the general case in which some or all points of interpolation coalesce. In particular,
whenall points of interpolation collapse to the samepoint, IMPE, IMMPE, and ITEA reduce
to SMPE, SMMPE, and STEA, respectively. This, along with the convergence theory given
in [4] and the developments in[5], indicates that the new interpolation procedures of the
present paper are likely to have good convergence properties, at least whenF(z) is analytic
in some bounded open setK0 and meromorphic in some other open setK1 whose interior
containsK0.
In addition, in caseN = 1, the approach we propose here, is designed such that the

procedure ITEA produces the solution to the (scalar) Cauchy interpolation problem. This
provides another justification of our approach.
In the next section, we give the general framework within which we can define a whole

family of vector-valued rational interpolants. The denominators of these interpolants are
scalar-valued polynomials whose coefficients can be chosen in different ways. Their nu-
merators are vector-valued polynomials that are constructed to satisfy the interpolation
conditions. Of course, for effective approximations, the denominator polynomials need to
be constructed carefully according to sensible criteria. This is the subject of Section3,
where we introduce three different types of criteria to obtain the three types of rational
interpolation procedures we alluded to above. We emphasize here that, unlike scalar ra-
tional interpolation, vector-valued rational interpolation cannot be dealt with only on the
basis of interpolation conditions; one needs additional criteria to define the
interpolants.
In Section4, we derive determinantal representations for these rational interpolants. The

determinantal representations of Section4may serve as a useful tool in the (de Montessus
type) convergence analysis of the interpolants as the degree of their numerators tends to
infinity while the degree of their denominators is kept fixed. This approach was used suc-
cessfully in[4] and some of the papers referred to there. We propose to come back to this
study in a future publication.
Methods for vector-valued rational interpolation have been considered in the literature.

See, for example, Graves-Morris[1,2], Graves-Morris and Jenkins[3], and Van Barel and
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Bultheel[6]. To the best of our knowledge, the methods we propose in the present work are
different.

2. General approach to vector-valued rational interpolation

Let zbe a complex variable and letF(z) be a vector-valued function such thatF :C →
CN . Assume thatF(z) is defined in a bounded open set� and consider the problem of
interpolatingF(z) at some of the points�1, �2, . . . , in this set. For the moment, we assume
that the�i are distinct.

LetGm,n(z) be the vector-valued polynomial (of degree at mostn−m) that interpolates
F(z) at the points�m, �m+1, . . . , �n. Thus, in Newtonian form, this polynomial is given as
in

Gm,n(z) = F [�m] + F [�m, �m+1](z − �m)

+F [�m, �m+1, �m+2](z − �m)(z − �m+1)

+ · · · + F [�m, �m+1, . . . , �n](z − �m)(z − �m+1) · · · (z − �n−1). (2.1)

Here,F [�r , �r+1, . . . , �r+s] is the divided difference of orders of F(z) over the set of
points{�r , �r+1, . . . , �r+s}. TheF [�r , �r+1, . . . , �r+s] are defined, as in the scalar case,
by the recursion relations

F [�r , �r+1, . . . , �r+s] = F [�r , �r+1, . . . , �r+s−1] − F [�r+1, �r+2, . . . , �r+s]
�r − �r+s

,

r = 1,2, . . . , s = 1,2, . . . , (2.2)

with the initial conditions

F [�r ] = F(�r ), r = 1,2, . . . . (2.3)

Obviously,F [�r , �r+1, . . . , �r+s] are all vectors inCN .
Before we proceed, we would like to emphasize that we employ the representation of

the interpolating polynomials via the Newton formula in our work not as a matter of con-
venience; we make actual use of it in fixing criteria for defining our vector-valued rational
approximations.
For simplicity of notation, we define the scalar polynomials�m,n(z) via

�m,n(z) =
n∏

r=m

(z − �r ), n�m�1; �m,m−1(z) = 1, m�1. (2.4)

We also define the vectorsDm,n via

Dm,n = F [�m, �m+1, . . . , �n], n�m. (2.5)

With this notation, we can rewrite (2.1) in the form

Gm,n(z) =
n∑

i=m

Dm,i �m,i−1(z). (2.6)
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We now define a general class of vector-valued rational functionsRp,k(z) by

Rp,k(z) = Up,k(z)

Vp,k(z)
=

∑k
j=0 cj �1,j(z)Gj+1,p(z)∑k

j=0 cj �1,j(z)
, (2.7)

wherec0, c1, . . . , ck are, for the time being, arbitrary complex scalars. Obviously,Up,k(z)

is a vector-valued polynomial of degree at mostp − 1 andVp,k(z) is a scalar polynomial
of degree at mostk. Note that, providedVp,k(�1) �= 0, we can normalizeVp,k(z) so that
Vp,k(�1) = c0 = 1.
The next lemma shows that, when the�i are distinct,Rp,k(z) interpolatesF(z).

Lemma 2.1. Assume that the�i are distinct. ProvidedVp,k(�i ) �= 0, i = 1,2, . . . , p, the
vector-valued rational functionRp,k(z) interpolatesF(z) at the points�1, �2, . . . , �p.

Proof. First,

F(z) − Rp,k(z) = Vp,k(z)F (z) − Up,k(z)

Vp,k(z)

=
∑k

j=0 cj �1,j(z)[F(z) − Gj+1,p(z)]∑k
j=0 cj �1,j(z)

. (2.8)

Next, lettingz = �i in (2.8), and using the fact that

Gj+1,p(�i ) = F(�i ), i = j + 1, j + 2, . . . , p (2.9)

and the fact that

�1,j(�i ) = 0, i = 1, . . . , j, (2.10)

we realize that�1,j(z)[F(z) − Gj+1,p(z)] = 0 for i = 1,2, . . . , p. This completes the
proof. �

In the next lemma, we analyze the limit ofRp,k(z) as�i → 0 for all i. The proof of this
lemma can be achieved by recalling that, ifF(z) hasscontinuous derivatives at�, then

lim
�i→�

i=0,1,...,s

F [�0, �1, . . . , �s] = F [�, �, . . . , �] = F (s)(�)
s! , s = 0, 1, . . . . (2.11)

Lemma 2.2. Assume thatF(z) is differentiable atz = 0 as many times as necessary.
Letting�i → 0 for all i, we have

lim
�i→0

i=1,2,...,p

Rp,k(z) =
∑k

j=0 cj z
jFp−j−1(z)∑k

j=0 cj zj
, (2.12)
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where

Fm(z) =
m∑
i=0

uiz
i, m = 0, 1, . . . ; ui = F (i)(0)

i! , i = 0, 1, . . . . (2.13)

Note that the resulting limit ofRp,k(z) in Lemma2.2satisfiesF(z) − Rp,k(z) = O(zp)

asz → 0. It is thus of the form given originally in[4], with p = n + k there.
The next lemma shows thatRp,k(z), precisely as defined by (2.7), interpolatesF(z) (in

the sense of Hermite) also when some points of interpolation coincide. An important point
to recall in this connection is that the divided differencesF [�r , �r+1, . . . , �r+s] are defined
via the recursion relation given in (2.2), provided we pass to the limit in case�r = �r+s

there. The divided difference table forF(z) can be computed very conveniently in this case
if we order the points�i as in Lemma2.3below and make use of (2.11) when necessary.

Lemma 2.3. Leta1, a2, . . . , be distinct complex numbers,and let

�1 = �2 = · · · = �r1 = a1

�r1+1 = �r1+2 = · · · = �r1+r2 = a2

�r1+r2+1 = �r1+r2+2 = · · · = �r1+r2+r3 = a3

and so on. (2.14)

Let t and�be the unique integers satisfyingt�0and0�� < rt+1 forwhichp = ∑t
i=1 ri+

�. Then,Rp,k(z), as defined in(2.7),and withVp,k(ai) �= 0 for all i, interpolatesF(z) as
follows:

R
(s)
p,k(ai) = F (s)(ai), for s = 0, 1, . . . , ri − 1 when i = 1, . . . , t,

and for s = 0, 1, . . . ,� − 1 when i = t + 1. (2.15)

(Of course,when� = 0, there is no interpolation atat+1.)

Proof.We start by recalling that, withn�m, Gm,n(z) is the generalized Hermite interpo-
lation polynomial toF(z) at the points�m, �m+1, . . . , �n, also when these points are not
necessarily distinct. We need to analyze each of the terms�1,j(z)[F(z) − Gj+1,p(z)] in
the numerator of (2.8). For this, it is sufficient to study the term with 0�j �r1 − 1 when
r1 > 1.The analysis of the rest of the terms is identical. Now,Gj+1,p(z) is the vector-valued
polynomial that interpolatesF(z) ata1, a2, . . . , at+1 as in

G
(s)
j+1,p(ai) = F (s)(ai), for 0�s�r1 − j − 1 wheni = 1,

for 0�s�ri − 1 wheni = 2, . . . , t, and for 0�s�� − 1

wheni = t + 1. (2.16)

Using this and (2.4), we realize that�1,j(z)[F(z) − Gj+1,p(z)] vanishes at the points
�1, �2, . . . , �p, taking multiplicities into account. That is, for everyj ∈ {0, 1, . . . , k},
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there holds(
ds

dzs
{�1,j(z)[F(z) − Gj+1,p(z)]}

)∣∣∣∣
z=ai

= 0,

for 0�s�ri − 1 when 1� i� t, and for 0�s�� − 1 wheni = t + 1.

(2.17)

Taking thesth derivative of both sides of (2.8), and invoking (2.17) with the assumption
thatVp,k(ai) �= 0 for all i, we complete the proof. �

3. Choice of thecj

So far, thecj in (2.7) are arbitrary. Of course, the quality ofRp,k(z) as an approximation
to F(z) depends very strongly on the choice of thecj . Naturally, thecj must depend on
F(z) and on the�i . In this section, we discuss precisely the idea of what may be a good
choice ofcj . We are assuming that the�i are not necessarily distinct and are ordered as in
Lemma2.3.
Using the short-hand notation

D̂m,n(z) = F [�m, �m+1, . . . , �n, z], n�m (3.1)

and recalling thatGm,n(z) is the polynomial that interpolatesF(z) at the points�m, �m+1,
. . . , �n, we have the error formula

F(z) − Gm,n(z) = D̂m,n(z)�m,n(z). (3.2)

Consequently, we have for 0�j �k andn�p,

F(z) = Gj+1,p(z) +
n∑

s=p+1

Dj+1,s�j+1,s−1(z) + D̂j+1,n(z)�j+1,n(z). (3.3)

Substituting this expression in (2.8), we obtain

F(z) − Rp,k(z) = �p,k(z)

Vp,k(z)
, (3.4)

where

�p,k(z) =
k∑

j=0

cj �1,j(z)[F(z) − Gj+1,p(z)]

=
k∑

j=0

cj �1,j(z)




n∑
s=p+1

Dj+1,s�j+1,s−1(z) + D̂j+1,n(z)�j+1,n(z)


 .

(3.5)
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By (2.4), we can rewrite (3.5) in the form

�p,k(z) =
p∏

i=1

(z − �i )


 n∑

s=p+1




k∑
j=0

cjDj+1,s


�p+1,s−1(z)

+



k∑
j=0

cj D̂j+1,n(z)


�p+1,n(z)


 . (3.6)

We now choose thecj such that the term inside the square brackets in (3.6) is “small” in
some sense. To this effect, we propose the following three procedures for defining thecj :
1. The first term of the summation

∑n
s=p+1 inside the square brackets in (3.6), namely,

thes = p + 1 term, is the vector
∑k

j=0 cjDj+1,p+1, and we propose to minimize the
norm of this vector. Thus, with the normalizationc0 = 1, which we assumed earlier,
c1, . . . , ck are the solution to the problem

min
c1,...,ck

∣∣∣∣∣∣
∣∣∣∣∣∣D1,p+1 +

k∑
j=1

cjDj+1,p+1

∣∣∣∣∣∣
∣∣∣∣∣∣ , (3.7)

where‖ · ‖ stands for an arbitrary vector norm inCN . With the l1- and l∞-norms,
the optimization problem can be solved by using linear programming. With thel2-
norm, it becomes a least-squares problem, which can be solved numerically via standard
techniques. Of course, the inner product(· , ·) that defines thel2-norm [that is,‖u‖ =√
(u, u) ], is not restricted to the standard inner product(u, v) = u∗v; it can be given by

(u, v) = u∗Mv, whereM is a hermitian positive definite matrix.
We denote the resulting rational interpolation procedure IMPE.

2. Again,with thenormalizationc0 = 1,wepropose todeterminec1, . . . , ck via thesolution
of the linear system

qi,D1,p+1 +
k∑

j=1

cjDj+1,p+1


 = 0, i = 1, . . . , k, (3.8)

whereq1, . . . , qk are linearly independent vectors inCN . This amounts to demanding
that the projection of thes = p + 1 term in the summation

∑n
s=p+1 inside the square

brackets in (3.6) unto the subspace spanned byq1, . . . , qk vanish. Note that we can
choose the vectorsq1, . . . , qk to be independent ofp or to depend onp.
We denote the resulting rational interpolation procedure IMMPE.

3. Again,with thenormalizationc0 = 1,wepropose todeterminec1, . . . , ck via thesolution
of the linear system

q,D1,s +
k∑

j=1

cjDj+1,s


 = 0, s = p + 1, p + 2, . . . , p + k, (3.9)
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whereq is a nonzero vector inCN . This amounts to demanding that the firstk vectors∑k
j=0 cjDj+1,s,p+1�s�p+k, in the summation

∑n
s=p+1 inside the square brackets

in (3.6) have zero projection along the vectorq.
We denote the resulting rational interpolation procedure ITEA.
The choices of thecj we have proposed here may at first seem to be ad hoc. This is far

from being the case, however, and the following lemma provides the justification of these
choices.

Lemma 3.1.When�i → 0 for all i, the rational functionsRn+k,k(z) obtained through
IMPE, IMMPE,andITEA procedures described above reduce precisely to the correspond-
ing rational functionsFn,k(z) obtained throughSMPE, SMMPE,andSTEA, respectively,
described in[4].

Proof.We already know from (2.4), (2.11), and (2.13) [and in the notation of (2.13)] that,
as�s → 0 for all s,�m,m+i−1(z) → zi ,Dm,m+i → ui , andGm,m+i (z) → Fi(z) for all m
andi. These imply that thecj for IMPE, IMMPE, and ITEA satisfy (after letting̃cj = ck−j ,
j = 0, 1, . . . , k)

min
c̃0,...,c̃k−1

∣∣∣∣∣∣
∣∣∣∣∣∣
k−1∑
j=0

c̃j un+j + un+k

∣∣∣∣∣∣
∣∣∣∣∣∣ , (3.10)


qi,

k−1∑
j=0

c̃j un+j + un+k


 = 0, i = 1, . . . , k, (3.11)


q,

k−1∑
j=0

c̃j un+i+j + un+i+k


 = 0, i = 0, 1, . . . , k − 1, (3.12)

respectively. Precisely these are the conditions that define the procedures SMPE, SMMPE,
and STEA along with (2.12) and (2.13).�

Another justification of our formulation ofRp,k(z) is provided by the next lemma that
concerns the scalar caseN = 1.

Lemma 3.2. In caseN = 1, that is, in caseF(z) is a scalar function,Rp,k(z) in the
ITEA approach interpolatesF(z) at the points�i , i = 1,2, . . . , p + k, when we take
(q,Dm,s) = Dm,s .Thus,Rp,k(z) is thesolution to theCauchy–Jacobi interpolationproblem
in this case.

Remark. Recall that the numerator and denominator polynomials ofRp,k(z) are of
degreep − 1 andk, respectively, which implies that the number of the coefficients to be
determined inRp,k(z) isp+ k. These are determined by thep+ k interpolation conditions
above.
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Proof. In this case, the equations in (3.9) become

k∑
j=0

cjDj+1,s = 0, s = p + 1, p + 2, . . . , p + k.

As a result, (3.6) becomes

�p,k(z) =
p+k∏
i=1

(z − �i )


 n∑

s=p+k+1




k∑
j=0

cjDj+1,s


�p+k+1,s−1(z)

+



k∑
j=0

cj D̂j+1,n(z)


�p+k+1,n(z)


 .

The result now follows as before.�

Before closing this section, we mention that a hybridization of IMMPE and ITEA is also
possible; that is, we can define thecj via the linear systems

qi,D1,p+1 +
k∑

j=1

cjDj+1,p+1


 = 0, i = 1, . . . ,�,


q,D1,p+1+i +

k∑
j=1

cjDj+1,p+1+i


 = 0, i = 1, . . . , k − �, (3.13)

where 0< � < k, andq1, . . . , q� are linearly independent vectors inCN .
Finally, we mention that the methods we have proposed for determining thecj can be

extended to the case in whichF(z) is such thatF : C → B, whereB is a general space,
exactly as is shown in[4, Section 6]. This amounts to the introduction of the norm defined
in B when the latter is a normed space (for IMPE), and to the introduction of some bounded
linear functionals (for IMMPE and ITEA). With these, the determinant representations of
the next section remain unchanged as well. We refer the reader to[4] for the details.

4. Determinantal representations

We now show that all the interpolantsRp,k(z)we discussed in the preceding section have
simple determinantal representations similar to those given in[4] for SMPE, SMMPE, and
STEA. We believe that these representations will serve as a useful tool in the convergence
analysis of the sequences{Rp,k(z)}∞p=0 with fixedk, as in [4], for the cases in whichF(z)

is analytic in the set� and meromorphic in a set containing� in its interior.
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Theorem 4.1. The rational functionsRp,k(z) defined byIMPE, IMMPE, and ITEA all
have determinant representations of the form

Rp,k(z) =

�1,0(z)G1,p(z) �1,1(z)G2,p(z) · · · �1,k(z)Gk+1,p(z)

u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

�1,0(z) �1,1(z) · · · �1,k(z)

u1,0 u1,1 · · · u1,k
u2,0 u2,1 · · · u2,k
...

...
...

uk,0 uk,1 · · · uk,k

, (4.1)

where

ui,j =



(Di+1,p+1 ,Dj+1,p+1) for IMPE,
(qi ,Dj+1,p+1) for IMMPE,

(q ,Dj+1,p+i ) for ITEA.

(4.2)

Here, the numerator determinant is vector-valued and is defined by its expansion with
respect to its first row. That is,if Mj is the cofactor of the term�1,j(z) in the denominator
determinant,then

Rp,k(z) =
∑k

j=0 Mj�1,j(z)Gj+1,p(z)∑k
j=0 Mj�1,j(z)

. (4.3)

All this is valid also when the�i are not necessarily distinct and are ordered as in Lemma
2.3.

Proof. First, note that thecj for IMPE, by (3.7), satisfy the normal equations

k∑
j=1

(Di+1,p+1,Dj+1,p+1)cj = −(Di+1,p+1,D1,p+1), i = 1, . . . , k. (4.4)

Next, thecj for IMMPE, by (3.8), satisfy the equations

k∑
j=1

(qi,Dj+1,p+1)cj = −(qi,D1,p+1), i = 1, . . . , k. (4.5)

Finally, thecj for ITEA, by (3.9), satisfy the equations

k∑
j=1

(q,Dj+1,p+i )cj = −(q,D1,p+i ), i = 1,2, . . . , k. (4.6)
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Thus, in all cases, thecj are the solution of the linear systems

k∑
j=1

ui,j cj = −ui,0, i = 1, . . . , k. (4.7)

Next, because theMj are the cofactors of the elements in the first rows of the numerator
and denominator determinants, it follows from (4.1) that

k∑
j=0

ui, jMj = 0, i = 1, . . . , k.

Dividing theith equality byM0, and lettingMj/M0 = cj , j = 0, 1, . . . , k,we see that the
equations in (4.7) are satisfied. The result now follows.�
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