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Abstract

In this work we propose three different procedures for vector-valued rational interpolation of a
function F(z), whereF : C — CV, and develop algorithms for constructing the resulting rational
functions. We show that these procedures also cover the general case in which some or all points of
interpolation coalesce. In particular, we show that, when all the points of interpolation collapse to
the same point, the procedures reduce to those presented and analyzed in an earlier paper [J. Approx.
Theory 77 (1994) 89] by the author, for vector-valued rational approximations from Maclaurin series
of F(z). Determinant representations for the relevant interpolants are also derived.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In an earlier work, Sidj4], we presented three different kinds of vector-valued rational
approximations derived from the Maclaurin serfesc, u;z* of a vector-valued function
F(z), whereF : C — C". Hereu; € C" are vectors independent nf These approxima-
tions were based on the minimal polynomial extrapolation (MPE), the modified minimal
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polynomial extrapolation (MMPE), and the topological epsilon algorithm (TEA), three
extrapolation methods used for accelerating the convergence of certain kinds of vector se-
guences; they were shown to have Padé-like algebraic properties and were denoted SMPE,
SMMPE, and STEA, respectively, for short. Following their derivation, we also provided in

[4] detailed convergence analyses of de Montessus and Koenig types pertaining to the case
in which F(z) is analytic at = 0 and meromorphic in some open dik= {z: |z| < R}.

The results of4] show that SMPE, SMMPE, and STEA are effective approximation
procedures for such functiord(z). The effectiveness of the procedures SMPE, SMMPE,
and STEA is also attested to by their close connection with well-known Krylov subspace
methods, such as those of Arnoldi and of Lanczos, for approximating eigenpairs of large
sparse matrices. For details, see $tliwhere some of the literature on vector extrapolation
and Krylov subspace methods is also mentioned.

In the present work, we treat the problemimtierpolatingthe functionF (z) by vector-
valued rational functions along lines similar to thosgipfWe derive three different types of
rational interpolation procedures, which we denote IMPE, IMMPE, and ITEA for short, in
analogy to SMPE, SMMPE, and STEA, respectively. We show that these procedures remain
valid for the general case in which some or all points of interpolation coalesce. In particular,
when all points of interpolation collapse to the same point, IMPE, IMMPE, and ITEA reduce
to SMPE, SMMPE, and STEA, respectively. This, along with the convergence theory given
in [4] and the developments [B], indicates that the new interpolation procedures of the
present paper are likely to have good convergence properties, at leask\ihaesmanalytic
in some bounded open skt and meromorphic in some other open &etwhose interior
containsKp.

In addition, in caseV = 1, the approach we propose here, is designed such that the
procedure ITEA produces the solution to the (scalar) Cauchy interpolation problem. This
provides another justification of our approach.

In the next section, we give the general framework within which we can define a whole
family of vector-valued rational interpolants. The denominators of these interpolants are
scalar-valued polynomials whose coefficients can be chosen in different ways. Their nu-
merators are vector-valued polynomials that are constructed to satisfy the interpolation
conditions. Of course, for effective approximations, the denominator polynomials need to
be constructed carefully according to sensible criteria. This is the subject of S8ction
where we introduce three different types of criteria to obtain the three types of rational
interpolation procedures we alluded to above. We emphasize here that, unlike scalar ra-
tional interpolation, vector-valued rational interpolation cannot be dealt with only on the
basis of interpolation conditions; one needs additional criteria to define the
interpolants.

In Sectiord, we derive determinantal representations for these rational interpolants. The
determinantal representations of Sectlamay serve as a useful tool in the (de Montessus
type) convergence analysis of the interpolants as the degree of their numerators tends to
infinity while the degree of their denominators is kept fixed. This approach was used suc-
cessfully in[4] and some of the papers referred to there. We propose to come back to this
study in a future publication.

Methods for vector-valued rational interpolation have been considered in the literature.
See, for example, Graves-Morfik,2], Graves-Morris and Jenkiti8], and Van Barel and
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Bultheel[6]. To the best of our knowledge, the methods we propose in the present work are
different.

2. General approach to vector-valued rational interpolation

Let zbe a complex variable and 1€t(z) be a vector-valued function such that C —
CV. Assume thaiF'(z) is defined in a bounded open $@tand consider the problem of
interpolatingF (z) at some of the point§;, &, . . ., in this set. For the moment, we assume
that theé; are distinct.

Let G, (z) be the vector-valued polynomial (of degree at mostm) that interpolates
F(2) atthe pointsl,,,, &, 11, - . ., &,. Thus, in Newtonian form, this polynomial is given as
in

Gmn(2) =FIEu] + FISy, Sngal(z — &)
+F[émv ém+l’ ém+2](z - ém)(z - £m+1)
+---+ F[émv £m+17 ceey 5n](z - ém)(z - éerl) e (z— fnfl)- (21)
Here, F[¢,, & 41, ..., & 4] is the divided difference of ordes of F(z) over the set of

points{&,, &41, ..., &ug). The FIE,, &y, ..., & 5] are defined, as in the scalar case,
by the recursion relations

. FIS St oo Crps—1] = FIE 41, Grqny v v v s Srpg]
F[ér’€r+17"'7él‘+s]= r» Sr+l r+s—1 r+1> 6r+42 r+s

Sr — Crs ’
r=1,2,...,s=1,2,..., (2.2)
with the initial conditions
FIE1=F(E), r=1.2.... (2.3)
Obviously,F[¢,, &1, ..., &4s] are all vectors irCY.

Before we proceed, we would like to emphasize that we employ the representation of
the interpolating polynomials via the Newton formula in our work not as a matter of con-
venience; we make actual use of it in fixing criteria for defining our vector-valued rational
approximations.

For simplicity of notation, we define the scalar polynomigjs , (z) via

n

Vn@=[]G@=&). nzm>1 ¥, 1) =1 m>1 (2.4)

r=m

We also define the vectoi3,, , via

Dm,n = F[émv ém—&—lv cee in]v n>m (25)

With this notation, we can rewrite (2.1) in the form

Gun@ =) Dui¥p;-1(2). (2.6)

i=m
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We now define a general class of vector-valued rational functigngz) by

Up,k(z) _ ZI;‘:O Cj wl,j(z) GjJFlaP(Z)
Vpi(2) 21;:0 cj (@)

wherecy, c1, ..., ¢k are, for the time being, arbitrary complex scalars. Obviousg}y; (z)
is a vector-valued polynomial of degree at mpst 1 andV,, x(z) is a scalar polynomial
of degree at mosgk. Note that, provided’, x(¢;) # 0, we can normalizé, ,(z) so that
Vpr(€1) = co= 1.

The next lemma shows that, when theare distinct,R, x (z) interpolatesF (z).

Rp,k(Z) = (27)

Lemma 2.1. Assume that thé; are distinct. Provided/,, 1 (¢;) # 0,i = 1,2,..., p, the
vector-valued rational functio®,  (z) interpolatesr'(z) at the pointsty, ¢, .. ., &)

Proof. First,
Vp,k(Z)F(Z) — Up,k(z)
Vp,k(z)
_ 21;20 Cj l//1,]'(2)[F(Z) — Gj+l,p(Z)]

F(z) = Rpi(2) =

Z§=0 cjyq ;@) &5
Next, lettingz = ¢&; in (2.8), and using the fact that
Git1p(C)=F(&), i=j+1j+2....p (2.9)
and the fact that
Ui ;&) =0, i=1...j (2.10)

we realize thatpl,j(z)[F(z) —Gjy1,p(1 =0fori =1,2,..., p. This completes the
proof. [J

In the next lemma, we analyze the limit 8§, ; (z) as¢; — 0 for alli. The proof of this
lemma can be achieved by recalling thatfifz) hass continuous derivatives &t then

] F®)
lm  Flloa.o Gl = FIG Lo 0= s'@, s=01,.... (211
i:é).l.:“.x ’

Lemma 2.2. Assume thatF(z) is differentiable atz = 0 as many times as necessary.
Letting&; — Ofor all i, we have

k J
) > 0¢iz Fp—i—1(2)
lim  Rpx(@) = j=0J7 TP
&

: (2.12)
k X
i=1,2,...p ZIZO CjZ/
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where

B F(i)(O)

il

m
Fm(z)=2uizi, m=0,1,...; u; , 1=01,.... (2.13)
i=0

Note that the resulting limit oR, x(z) in Lemma2.2satisfiesF (z) — R, x(z) = O(z”)
asz — 0. Itis thus of the form given originally ifd], with p = n + k there.
The next lemma shows th&, , (z), precisely as defined by (2.7), interpolafeg) (in
the sense of Hermite) also when some points of interpolation coincide. An important point
to recall in this connection is that the divided differenéds,, &, 4. ..., &, ] are defined
via the recursion relation given in (2.2), provided we pass to the limit in ase &,
there. The divided difference table f6l(z) can be computed very conveniently in this case
if we order the pointg; as in Lemma&.3below and make use of (2.11) when necessary.

Lemma 2.3. Letas, az, ..., be distinct complex numbeiand let
G1=C==¢,=a1
ér1+l = ér1+2 == érl-‘rrg =daz
ér1+r2+1 = £r1+r2+2 == §r1+r2+r3 =das
and so on. (2.14)

Lettandp be the unique integers satisfying 0and0< p < r;41 forwhichp = >0 _; ri+
p. Then,R, «(z), as defined in2.7),and with V), ;(a;) # O for all i, interpolatesF (z) as
follows:

R;ﬁ)lc(a[)zF(s)(ai), fors=0,1,....n, —1 wheni=1,...,1t,
andfors =0,1,...,p—1 wheni=1+1. (2.15)

(Of coursewhenp = 0, there is no interpolation at;1.)

Proof. We start by recalling that, with >m, G,, ,(z) is the generalized Hermite interpo-
lation polynomial toF'(z) at the pointst,,,, &, 11, - . ., &,, also when these points are not
necessarily distinct. We need to analyze each of the tdmﬁz)[F(z) —Gjy1,p(@1In
the numerator of (2.8). For this, it is sufficient to study the term with0<r1 — 1 when

r1 > 1. The analysis of the rest of the terms is identical. NGw; 1 ,(z) is the vector-valued

polynomial that interpolateg'(z) atas, az, ..., a;+1 @sin
Gg.i)rl’p(a,') = F9(q), for0<s<rm—j—1 wheni=1,
forO<s<r;—1 wheni=2,...,¢t, andforO<s<p—1
wheni =t + 1. (2.16)

Using this and (2.4), we realize th&tl,j(z)[F(z) — Gj+1,p(2)] vanishes at the points
¢1, €2, ..+, £, taking multiplicities into account. That is, for every € {0,1, ..., 4},
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there holds

:07

dS
(ﬁ{wl,j(z)[F(Z) — G(/+1,p(Z)]}>
' Z=aj
for0O<s<r; —1 whenI<i<t, andforO<s<p—1 wheni=r+1
(2.17)

Taking thesth derivative of both sides of (2.8), and invoking (2.17) with the assumption
thatV), «(a;) # O for alli, we complete the proof. [J

3. Choice of thec;

So far, thec; in (2.7) are arbitrary. Of course, the quality ®f ;. (z) as an approximation
to F(z) depends very strongly on the choice of the Naturally, thec; must depend on
F(z) and on theZ;. In this section, we discuss precisely the idea of what may be a good
choice ofc;. We are assuming that tifg are not necessarily distinct and are ordered as in
Lemma2.3.

Using the short-hand notation

5n1,n(z) = F[é}nvém—‘—l’--'»én’ Z]a n>m (31)

and recalling thaG ,, , (z) is the polynomial that interpolatés(z) at the pointsZ,,,, £, .1,
..., ¢,, we have the error formula

F(z) — Gmn(z) = 2.)\m,n (Z)lﬁm,n(z)- (3.2)

Consequently, we have forQ;j <k andn > p,

F()=Gj11p@+ Y Dij1s¥jp1s1G) + Djp1a@Vj11,(). (3.3)
s=p+1

Substituting this expression in (2.8), we obtain

Ap k(2)

F@) = Rpi(d) = 5 ok
p,

(3.4)

where
k

Apr(@) =) cjhy jQIF (@) — Gjy1,()]

J=0

k n
= Z cjy¥y,(2) Z Djy1s¥ji1-1(2) + 5j+l,n(Z)lp./+1,n(Z) :
i=0

s=p+1
(3.5)
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By (2.4), we can rewrite (3.5) in the form

n

p k
Apr@=[JG=) | D 1D €iDjsts { ¥pr1,-1()

i=1 s=p+1 | j=0

k
+ 1> €iDjs1.a(@) { Y pr1a(@) |- (3.6)
j=0

We now choose the; such that the term inside the square brackets in (3.6) is “small” in
some sense. To this effect, we propose the following three procedures for defining the
1. The first term of the summatioEZsz inside the square brackets in (3.6), namely,

thes = p + 1 term, is the vecto['}zo ¢jDjy1,p+1, and we propose to minimize the
norm of this vector. Thus, with the normalizationp = 1, which we assumed earlier,
c1, ..., ci are the solution to the problem

k
Jmin D1 pas + Y eiDjspiaf]s 3.7)
j=1
where| - | stands for an arbitrary vector norm . With the /1- andl,.-norms,

the optimization problem can be solved by using linear programming. Withisthe

norm, it becomes a least-squares problem, which can be solved numerically via standard

techniques. Of course, the inner product.) that defines thé>-norm [that is,||u|| =
+/(u, u)], is not restricted to the standard inner prod@ctv) = u*v; it can be given by
(u, v) = u*Mv, whereM is a hermitian positive definite matrix.
We denote the resulting rational interpolation procedure IMPE.

2. Again, with the normalizatiory = 1, we proposeto determing, . . ., ¢, viathe solution
of the linear system

k

Qi,Dl,p+1+chDj+l,p+l =0, i=1,...,k, (3.8)
j=1
wheregz, .. ., gx are linearly independent vectors @1'. This amounts to demanding

that the projection of the = p + 1 term in the summatioE?:erl inside the square
brackets in (3.6) unto the subspace spanned4by. ., g, vanish. Note that we can
choose the vectorg, . . ., g to be independent qf or to depend op.
We denote the resulting rational interpolation procedure IMMPE.

3. Again, withthe normalizatiory = 1, we propose to determing, . . ., ¢, viathe solution
of the linear system

k
q.D1s+ ) ¢jDjy1s| =0, s=p+1p+2....p+k (3.9)
j=1
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whereq is a nonzero vector it". This amounts to demanding that the fikstectors

Zl}:o cjDjt15, p+1<s < p+k,inthe summatior) 1 inside the square brackets

in (3.6) have zero projection along the veatpr

We denote the resulting rational interpolation procedure ITEA.

The choices of the; we have proposed here may at first seem to be ad hoc. This is far
from being the case, however, and the following lemma provides the justification of these
choices.

n
s=p+

Lemma 3.1. When¢; — O for all i, the rational functionsR, 1 x(z) obtained through
IMPE, IMMPE, andITEA procedures described above reduce precisely to the correspond-
ing rational functionsF), i (z) obtained througtsMPE, SMMPEand STEA, respectively,
described in4].

Proof. We already know from (2.4), (2.11), and (2.13) [and in the notation of (2.13)] that,
as¢, — Oforalls,y,, ,,1i-1(2) = 2' Dmti —> ui, aNAG i (z) — Fi(z) forallm
andi. These imply that the; for IMPE, IMMPE, and ITEA satisfy (after letting; = cx—;,
j=0,1,...,k)

k-1
- ml[‘ Z 5jun+j + Untk|| s (3.10)
COseeesCh—1 | |4
j=0
k-1
qi, Eju,,ﬂ—i-u,,Jrk =0, i=1,...,k, (3.12)
j=0
k=1
q, Ejun-‘ri—i-j + Un+i+k = 0, I = 0, 1, P k — 1, (312)
j=0

respectively. Precisely these are the conditions that define the procedures SMPE, SMMPE,
and STEA along with (2.12) and (2.13)[1

Another justification of our formulation aR, « (z) is provided by the next lemma that
concerns the scalar case= 1.

Lemma 3.2. In caseN = 1, that is,in caseF(z) is a scalar function,R,, x(z) in the
ITEA approach interpolates(z) at the pointsé;, i = 1,2,..., p + k, when we take
(g, Din,s) = Dy 5. Thus,R, (z) isthe solution to the Cauchy—Jacobiinterpolation problem
in this case.

Remark. Recall that the numerator and denominator polynomial®gf (z) are of
degreep — 1 andk, respectively, which implies that the number of the coefficients to be
determined iR, x(z) is p + k. These are determined by thet k interpolation conditions
above.
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Proof. In this case, the equations in (3.9) become

k
ZCJ‘DJ’+1,S=0, s=p+1,p+2,...,p+k.
=0

As aresult, (3.6) becomes

p+k n

k
dpi@=[]G=&| D 1D €iDjtts { ¥prrrrs1()
i=1

s=p+k+1 | j=0
k
+13 " ¢;Djt1n(@ ¥ prrr1.0(@

j=0
The result now follows as before.[]
Before closing this section, we mention that a hybridization of IMMPE and ITEA is also

possible; that is, we can define thevia the linear systems

k
ql7Dl,p+l+chDj+l,p+l =09 i:19~"1,l’t7

j=1
k
q, D1 pt1+i + ZCij+1,p+1+i =0, i=1....k—u (3.13)
j=1
where O< p < k, andgqa, ..., g, are linearly independent vectors@'.

Finally, we mention that the methods we have proposed for determining tben be
extended to the case in whidf(z) is such thatF : C — B, whereB is a general space,
exactly as is shown ifd, Section 6]. This amounts to the introduction of the norm defined
in B when the latter is a normed space (for IMPE), and to the introduction of some bounded
linear functionals (for IMMPE and ITEA). With these, the determinant representations of
the next section remain unchanged as well. We refer the rea@@rftr the details.

4. Determinantal representations

We now show that all the interpolangs, , (z) we discussed in the preceding section have
simple determinantal representations similar to those givefi ifior SMPE, SMMPE, and
STEA. We believe that these representations will serve as a useful tool in the convergence
analysis of the sequencegp,k(z)};ozo with fixed k, as in [4], for the cases in whicfi(z)
is analytic in the se© and meromorphic in a set containifdjin its interior.
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Theorem 4.1. The rational functionsk, ;(z) defined blMPE, IMMPE, and ITEA all
have determinant representations of the form

V102 G1.p(@) ¥1.1(2) G2,p(2) -+ Y14(2) Grs1,p(2)

u1,0 ui1 e Uik
u2,0 uz 1 e Uz j
Uk,0 Uk,1 e Uk k
Rpi(z) = ; (4.1)
lP1,0(Z) lﬁl,l(Z) lﬁl,k(Z)
ui0 U1l - ULk
U0 U1 v U2k
ko Ukl o Ukk
where
(Dit+1,p+1, Djy1,p+1) for IMPE,
uij =19 (qi,Djt1,p+1) for IMMPE, (4.2)

(@.Dj11.pti) for ITEA.

Here, the numerator determinant is vector-valued and is defined by its expansion with
respect to its first row. That i# M; is the cofactor of the ternfr; ;(z) in the denominator
determinantthen

Z§=o My (2) Gjt1,p(2)
Yoo My (2)

All this is valid also when thé; are not necessarily distinct and are ordered as in Lemma
2.3.

Rp.k(z) =

(4.3)

Proof. First, note that the; for IMPE, by (3.7), satisfy the normal equations

k

Z (Dit1,p41, Djs1, pr1)cj = —(Dig1,p1, D1 py1), i=1,... k. (4.4)
j=1

Next, thec; for IMMPE, by (3.8), satisfy the equations

k
Z i, Djy1,prv)cj = —(qi,» D1,py1), 1=1,... k. (4.5)
=1

Finally, thec; for ITEA, by (3.9), satisfy the equations

k
Y @ Djiapiide; =—(@. D1pyi). i=12 ... .k (4.6)
Jj=1
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Thus, in all cases, the; are the solution of the linear systems

k
S uijej = —uio. i=1....k (4.7)
j=1

Next, because th#f; are the cofactors of the elements in the first rows of the numerator
and denominator determinants, it follows from (4.1) that

k

S uijM;=0, i=1.....k
j=0

Dividing theith equality byMo, and lettingM ; /Mo = c;, j = 0,1, ..., k, we see that the
equations in (4.7) are satisfied. The result now followis]
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